Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.379
Filtrar
1.
J Agric Food Chem ; 72(14): 7784-7793, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561632

RESUMO

The ability to recognize a host plant is crucial for insects to meet their nutritional needs and locate suitable sites for laying eggs. Bactrocera dorsalis is a highly destructive pest in fruit crops. Benzothiazole has been found to induce oviposition behavior in the gravid B. dorsalis. However, the ecological roles and the olfactory receptor responsible for benzothiazole are not yet fully understood. In this study, we found that adults were attracted to benzothiazole, which was an effective oviposition stimulant. In vitro experiments showed that BdorOR49b was narrowly tuned to benzothiazole. The electroantennogram results showed that knocking out BdorOR49b significantly reduced the antennal electrophysiological response to benzothiazole. Compared with wild-type flies, the attractiveness of benzothiazole to BdorOR49b knockout adult was significantly attenuated, and mutant females exhibited a severe decrease in oviposition behavior. Altogether, our work provides valuable insights into chemical communications and potential strategies for the control of this pest.


Assuntos
Receptores Odorantes , Tephritidae , Animais , Feminino , Receptores Odorantes/genética , Oviposição , Tephritidae/fisiologia , Benzotiazóis/farmacologia
2.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597910

RESUMO

Larval habitats of blood-feeding stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), overlap with foraging sites of black blow flies, Phormia regina (Meigen) (Diptera: Calliphoridae). We tested the hypothesis that bacteria in blow fly excreta inform oviposition decisions by female stable flies. In laboratory 2-choice bioassays, we offered gravid female stable flies fabric-covered agar plates as oviposition sites that were kept sterile or inoculated with either a blend of 7 bacterial strains isolated from blow fly excreta (7-isolate-blend) or individual bacterial isolates from that blend. The 7-isolate-blend deterred oviposition by female stable flies, as did either of 2 strains of Morganella morganii subsp. sibonii. Conversely, Exiguobacterium sp. and Serratia marcescens each prompted oviposition by flies. The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria could not be physically accessed. Oviposition deterrence caused by semiochemicals of the 7-isolate-blend may help stable flies avoid competition with blow flies. The semiochemicals of bioactive bacterial strains could be developed as trap lures to attract and capture flies and deter their oviposition in select larval habitats.


Assuntos
Morganella , Muscidae , Feminino , Animais , Calliphoridae , Oviposição , Larva , Bactérias , Feromônios
3.
Elife ; 122024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564369

RESUMO

Evolutionary transitions from egg laying (oviparity) to live birth (viviparity) are common across various taxa. Many species also exhibit genetic variation in egg-laying mode or display an intermediate mode with laid eggs containing embryos at various stages of development. Understanding the mechanistic basis and fitness consequences of such variation remains experimentally challenging. Here, we report highly variable intra-uterine egg retention across 316 Caenorhabditis elegans wild strains, some exhibiting strong retention, followed by internal hatching. We identify multiple evolutionary origins of such phenotypic extremes and pinpoint underlying candidate loci. Behavioral analysis and genetic manipulation indicates that this variation arises from genetic differences in the neuromodulatory architecture of the egg-laying circuitry. We provide experimental evidence that while strong egg retention can decrease maternal fitness due to in utero hatching, it may enhance offspring protection and confer a competitive advantage. Therefore, natural variation in C. elegans egg-laying behaviour can alter an apparent trade-off between different fitness components across generations. Our findings highlight underappreciated diversity in C. elegans egg-laying behavior and shed light on its fitness consequences. This behavioral variation offers a promising model to elucidate the molecular changes in a simple neural circuit underlying evolutionary shifts between alternative egg-laying modes in invertebrates.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Oviposição/genética , Oviparidade , Proteínas de Caenorhabditis elegans/genética , Evolução Biológica
4.
Pestic Biochem Physiol ; 200: 105832, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582595

RESUMO

Moth insects rely on sex pheromones for long distance attraction and searching for sex partners. The biosynthesis of moth sex pheromones involves the catalytic action of multiple enzymes, with desaturases playing a crucial role in the process of carbon chain desaturation. However, the specific desaturases involved in sex pheromone biosynthesis in fall armyworm (FAW), Spodoptera frugiperda, have not been clarified. In this study, a Δ11 desaturase (SfruDES1) gene in FAW was knocked out using the CRISPR/Cas9 genome editing system. A homozygous mutant of SfruDES1 was obtained through genetic crosses. The gas chromatography-mass spectrometry (GC-MS) analysis results showed that the three main sex pheromone components (Z7-12:Ac, Z9-14:Ac, and Z11-16:Ac) and the three minor components (Z9-14:Ald, E11-14:Ac and Z11-14:Ac) of FAW were not detected in homozygous mutant females compared to the wild type. Furthermore, behavioral assay demonstrated that the loss of SfruDES1 resulted in a significant reduction in the attractiveness of females to males, along with disruptions in mating behavior and oviposition. Additionally, in a heterologous expression system, recombinant SfruDES1 could introduce a cis double bond at the Δ11 position in palmitic acid, which resulted in the changes in components of the synthesized products. These findings suggest desaturase plays a key role in the biosynthesis of sex pheromones, and knockout of the SfruDES1 disrupts sex pheromone biosynthesis and mating behavior in FAW. The SfruDES1 could serve as tool to develop a control method for S. frugiperda.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Feminino , Masculino , Spodoptera/genética , Spodoptera/metabolismo , Atrativos Sexuais/metabolismo , Oviposição , Mariposas/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/metabolismo
5.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612549

RESUMO

Erythritol has shown excellent insecticidal performance against a wide range of insect species, but the molecular mechanism by which it causes insect mortality and sterility is not fully understood. The mortality and sterility of Drosophila melanogaster were assessed after feeding with 1M erythritol for 72 h and 96 h, and gene expression profiles were further compared through RNA sequencing. Enrichment analysis of GO and KEGG revealed that expressions of the adipokinetic hormone gene (Akh), amylase gene (Amyrel), α-glucosidase gene (Mal-B1/2, Mal-A1-4, Mal-A7/8), and triglyceride lipase gene (Bmm) were significantly up-regulated, while insulin-like peptide genes (Dilp2, Dilp3 and Dilp5) were dramatically down-regulated. Seventeen genes associated with eggshell assembly, including Dec-1 (down 315-fold), Vm26Ab (down 2014-fold) and Vm34Ca (down 6034-fold), were significantly down-regulated or even showed no expression. However, there were no significant differences in the expression of three diuretic hormone genes (DH44, DH31, CAPA) and eight aquaporin genes (Drip, Big brain, AQP, Eglp1, Eglp2, Eglp3, Eglp4 and Prip) involved in osmolality regulation (all p value > 0.05). We concluded that erythritol, a competitive inhibitor of α-glucosidase, severely reduced substrates and enzyme binding, inhibiting effective carbohydrate hydrolysis in the midgut and eventually causing death due to energy deprivation. It was clear that Drosophila melanogaster did not die from the osmolality of the hemolymph. Our findings elucidate the molecular mechanism underlying the mortality and sterility in Drosophila melanogaster induced by erythritol feeding. It also provides an important theoretical basis for the application of erythritol as an environmentally friendly pesticide.


Assuntos
Proteínas de Drosophila , Infertilidade , Animais , Feminino , Transcriptoma , Drosophila melanogaster/genética , Oviposição , alfa-Glucosidases , Perfilação da Expressão Gênica , Eritritol/farmacologia , Amilases , Proteínas de Drosophila/genética
6.
Chem Senses ; 492024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38606759

RESUMO

Where to lay the eggs is a crucial decision for females as it influences the success of their offspring. Female flies prefer to lay eggs on food already occupied and consumed by larvae, which facilitates social feeding, but potentially could also lead to detrimental interactions between species. Whether females can modulate their attraction to cues associated with different species is unknown. Here, we analyzed the chemical profiles of eggs and larvae of 16 Drosophila species, and tested whether Drosophila flies would be attracted to larvae-treated food or food with eggs from 6 different Drosophila species. The chemical analyses revealed that larval profiles from different species are strongly overlapping, while egg profiles exhibit significant species specificity. Correspondingly, female flies preferred to lay eggs where they detected whatever species' larval cues, while we found a significant oviposition preference only for eggs of some species but not others. Our findings suggest that both larval and egg cues present at a given substrate can drive oviposition preference in female flies.


Assuntos
Drosophila , Oviposição , Animais , Feminino , Larva , Sinais (Psicologia) , Alimentos
7.
Arch Insect Biochem Physiol ; 115(4): e22114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659314

RESUMO

The insect cuticle plays a key role in maintaining the insect's physiological function and behavior. Herein, the yellow-y protein is required to produce black melanin, and is expressed in a pattern that correlates with the distribution of this pigment. However, yellow-y can also have other functions, for instance, in insect behavior, but not much is known. In this study, we have studied the yellow-y gene in one important model and pest species, namely the German cockroach (Blattella germanica), which is to our knowledge the first time reported. In essence, we identified the yellow-y gene (BgY-y) and characterized its function by using RNA interference (RNAi). Silencing of BgY-y gene led to different developmental abnormalities (body weight and wings) in both genders. Specifically, there was an abundant decrease in melanin, turning the body color in pale yellow and the cuticle softer and more transparent. Interestingly, we also observed that the knockdown of BgY-y impaired the male cockroaches to display a weaker response to female-emitted contact sex pheromones, and also that the oviposition ability was weakened in the RNAi females. This study comprehensively analyzed the biological functions of the yellow-y gene in German cockroaches from the perspectives of development, body color, courtship behavior and oviposition, and as a consequence, this may opens new avenues to explore it as a novel pest control gene.


Assuntos
Blattellidae , Proteínas de Insetos , Oviposição , Pigmentação , Interferência de RNA , Animais , Blattellidae/genética , Blattellidae/fisiologia , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Pigmentação/genética , Corte , Melaninas/metabolismo , Comportamento Sexual Animal
8.
Naturwissenschaften ; 111(3): 21, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598027

RESUMO

Frogs of the Allophrynidae are an enigmatic family from South America. To date, published information is lacking regarding this group's reproductive biology and larval morphology. Here, we provide the first detailed description of the reproductive mode, developmental mode, and tadpole morphology for Allophryne ruthveni. We developed a captive breeding and rearing protocol for this species and then conducted a series of observations to describe aspects of its reproductive biology. In captivity, this species exhibits aquatic oviposition, where single eggs are laid ungrouped within a simple jelly capsule and are scattered free in the water column before sinking to develop on benthic substrates. We did not observe parental care nor any parental interactions with eggs post-fertilization. Tadpoles are characterized by an oval body, anteroventral oral disc, a labial tooth row formula of 2(2)/3, and a dextral vent tube. The buccopharyngeal cavity is marked by the presence of two pairs of infralabial papilla and four lingual papillae. Cranial morphology is characterized by the presence of the commissura quadratoorbital. This species possesses an additional slip of the m. rectus cervicis and of the m. levator arcuum branchialium III. We discuss our results in comparison with glassfrogs (Centrolenidae).


Assuntos
Anuros , Reprodução , Feminino , Animais , Oviposição , Larva , Crânio
9.
Parasitol Res ; 123(3): 164, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502307

RESUMO

The cattle tick Rhipicephalus microplus is an ectoparasite of high importance in veterinary medicine and public health. Since synthetic chemicals used to control these ticks can select resistant strains and cause toxic effects in their hosts, there is a need to identify effective substances with fewer adverse effects. For this reason, we investigated the effects of alpha- and beta-pinene, known for their various biological effects, on the mortality and reproductive performance of R. microplus engorged female ticks. The products were diluted in a 2% Tween 80 aqueous solution. The ticks were first weighed and then immersed in the test solutions for five minutes. Then, they were dried with paper towels and fixed dorsoventrally in Petri dishes, totalling five treatment groups for each pinene and a control group treated with the solvent alone. The ticks were monitored daily for mortality, and their eggs were collected and weighed. The larval hatching rate was estimated, and the pre-oviposition and incubation periods were determined. From these data, the following parameters were calculated: egg production index, fertility rate, estimated reproduction rate, percentages of reduction in oviposition and hatching, and product efficacy. Alpha-pinene showed better results at higher concentrations, unlike beta-pinene, which was more effective at lower concentrations. The effectiveness of alpha-pinene was 74% at a concentration of 14.0 µL/mL, while beta-pinene showed 78% efficacy at 2.0 µL/mL. The results indicated for the first time different effects of two isomers in ticks, suggesting that these compounds act on R. microplus females in different ways.


Assuntos
Acaricidas , Monoterpenos Bicíclicos , Ixodidae , Rhipicephalus , Animais , Feminino , Oviposição , Acaricidas/farmacologia , Larva
10.
J Agric Food Chem ; 72(13): 6954-6963, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512330

RESUMO

The oriental fruit fly,Bactrocera dorsalis (Hendel), is a notorious pest of fruit crops, causing severe damage to fleshy fruits during oviposition and larval feeding. Gravid females locate suitable oviposition sites by detecting the host volatiles. Here, the oviposition preference of antenna-removed females and the electrophysiological response of ovipositors to benzothiazole indicated that both antennae and ovipositors are involved in perceiving benzothiazole. Subsequently, odorant receptors (ORs) expressed in both antennae and ovipositors were screened, and BdorOR43a-1 was further identified to respond to benzothiazole using voltage-clamp recording. Furthermore, BdorOR43a-1-/- mutants were obtained using the CRISPR/Cas9 system and their oviposition preference to benzothiazole was found to be significantly altered compared to WT females, suggesting that BdorOR43a-1 is one of the important ORs for benzothiazole perception. Our results not only demonstrate the important role of antennae and ovipositors in benzothiazole-induced oviposition but also elucidate on the OR responsible for benzothiazole perception in B. dorsalis.


Assuntos
Receptores Odorantes , Tephritidae , Feminino , Animais , Oviposição , Tephritidae/fisiologia , Receptores Odorantes/genética , Benzotiazóis/farmacologia
11.
Oecologia ; 204(3): 653-660, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461225

RESUMO

Group-living animals sometimes cooperatively protect their offspring against predators. This behavior is observed in a wide range of taxa but, to the best of our knowledge, this is the first report of its occurrence in arthropods that are not eusocial. Adult female predatory mites Gynaeseius liturivorus protect their eggs against egg predators, the predatory mite species Neoseiulus californicus. In the field, several adult female G. liturivorus were often found on the same plant structures such as folded leaves. We tested whether these females might protect their eggs cooperatively, focusing on kinship between the females. When two adult female G. liturivorus were kept in the absence of egg predators, their reproduction was not affected by their kinship. The presence of egg predators reduced the number of G. liturivorus eggs. However, reproduction of two G. liturivorus sisters was higher than that of two non-sisters. Together, sisters guarded the oviposition site longer than non-sisters. We further tested if non-sisters increased egg guarding by having developed together from eggs to adults and found no such effect. Although it remains unclear how adult female G. liturivorus recognize conspecifics as kin or sisters, our results suggest that G. liturivorus sisters reduced predation on their offspring by cooperatively guarding their eggs.


Assuntos
Ácaros , Animais , Feminino , Comportamento Predatório , Oviposição , Reprodução , Folhas de Planta
12.
Parasit Vectors ; 17(1): 136, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491527

RESUMO

BACKGROUND: Maintaining mosquito colonies in the laboratory requires a blood supply so that females' oocytes can mature and oviposition can take place. In this study, a new artificial hematophagy system for colonization and maintenance of Culex quinquefasciatus in the laboratory was developed and tested. METHODS: We developed an attractive polymeric biofilm including 25% L-lactic acid for use as a membrane in an artificial hematophagy system and compared the feeding rate of females with Parafilm-M®. We also evaluated the oviposition rate, larval survival and adult emergence of females fed through the attractive biofilm. RESULTS: The average percentage of female Cx. quinquefasciatus fed through the attractive biofilm was 87%, while only 20% became engorged with Parafilm-M® (p < 0.0001). Feeding through the attractive biofilm developed in this study produced high levels of evaluated biological parameters; the percentage of egg laying by females that underwent artificial hematophagy through the biofilm was 90%, with an average of 158 eggs per raft. From these eggs, 97% of the larvae hatched, of which 95% reached the pupal stage. The adult emergence rate corresponded to 93% of pupae. CONCLUSIONS: Insects fed with attractant through the biofilm system had a higher engorgement rate compared to those fed through Parafilm-M®. Our study is preliminary and suggests that polymeric biofilm has great potential for artificially feeding mosquitoes in the laboratory. Based on this research, new studies will be carried out with biofilm and different systems.


Assuntos
Culex , Culicidae , Feminino , Animais , Parafina , Óvulo , Oviposição , Larva
13.
Parasit Vectors ; 17(1): 154, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523287

RESUMO

BACKGROUND: Water quality is known to influence the development and survival of larval mosquitoes, which affects mosquito-borne pathogen transmission as a function of the number of mosquitoes that reach adulthood and blood feed. Although water properties are known to affect mosquito development, few studies have investigated the link among soil properties, water quality, and mosquito development. Given the large number of ground-breeding mosquito species, this linkage is a potentially important factor to consider in mosquito ecology. In this study, we explored the effects of different soils on multiple life history parameters of the ground-breeding mosquito species Culex quinquefasciatus (Diptera: Culicidae). METHODS: Cx. quinquefasciatus larvae were reared in water combined with different soil substrates (sandy, silt, or clay loam textures) at increasing soil to water volume ratios, with and without the addition of organic matter (fish food). Gravid mosquitoes were offered different soil-water extracts to investigate soil effects on oviposition preference. RESULTS: Without the addition of organic matter, larval survival and development differed significantly among waters with different soil textures and volumes of substrate. Mosquitoes in water with clay loam soil survived longer and developed further than mosquitoes in other soil waters. Larvae survived for longer periods of time with increased volumes of soil substrate. Adding organic matter reduced the differences in larval survival time, development, and pupation among soil-water extracts. Adult female mosquitoes oviposited more frequently in water with clay loam soil, but the addition of organic matter reduced the soil effects on oviposition preference. CONCLUSIONS: This study suggests soil composition affects larval mosquito survival and development, as well as the oviposition preference of gravid females. Future studies could differentiate abiotic and biotic soil features that affect mosquitoes and incorporate soil variation at the landscape scale into models to predict mosquito population dynamics and mosquito-borne pathogen transmission.


Assuntos
Culex , Culicidae , Feminino , Animais , Oviposição , Solo , Argila , Larva
14.
Genet Sel Evol ; 56(1): 20, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504219

RESUMO

BACKGROUND: Resilience is the capacity of an animal to be minimally affected by disturbances or to rapidly return to its initial state before exposure to a disturbance. Resilient livestock are desired because of their improved health and increased economic profit. Genetic improvement of resilience may also lead to trade-offs with production traits. Recently, resilience indicators based on longitudinal data have been suggested, but they need further evaluation to determine whether they are indeed predictive of improved resilience, such as disease resilience. This study investigated different resilience indicators based on deviations between expected and observed egg production (EP) by exploring their genetic parameters, their possible trade-offs with production traits, and their relationships with antibody traits in chickens. METHODS: Egg production in a nucleus breeding herd environment based on 1-week-, 2-week-, or 3-week-intervals of two purebred chicken lines, a white egg-laying (33,825 chickens) and a brown egg-laying line (34,397 chickens), were used to determine deviations between observed EP and expected average batch EP, and between observed EP and expected individual EP. These deviations were used to calculate three types of resilience indicators for two life periods of each individual: natural logarithm-transformed variance (ln(variance)), skewness, and lag-one autocorrelation (autocorrelation) of deviations from 25 to 83 weeks of age and from 83 weeks of age to end of life. Then, we estimated their genetic correlations with EP traits and with two antibody traits. RESULTS: The most promising resilience indicators were those based on 1-week-intervals, as they had the highest heritability estimates (0.02-0.12) and high genetic correlations (above 0.60) with the same resilience indicators based on longer intervals. The three types of resilience indicators differed genetically from each other, which indicates that they possibly capture different aspects of resilience. Genetic correlations of the resilience indicator traits based on 1-week-intervals with EP traits were favorable or zero, which means that trade-off effects were marginal. The resilience indicator traits based on 1-week-intervals also showed no genetic correlations with the antibody traits, which suggests that they are not informative for improved immunity or vice versa in the nucleus environment. CONCLUSIONS: This paper gives direction towards the evaluation and implementation of resilience indicators, i.e. to further investigate resilience indicator traits based on 1-week-intervals, in breeding programs for selecting genetically more resilient layer chickens.


Assuntos
Galinhas , Resiliência Psicológica , Animais , Galinhas/genética , Oviposição/genética , Anticorpos/genética , Fenótipo
15.
Parasit Vectors ; 17(1): 116, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454463

RESUMO

BACKGROUND: Schistosomiasis is a disease primarily caused by eggs laid by pathogens called schistosomes. Among the schistosome species infecting humans, Schistosoma japonicum possesses the largest fecundity; each adult female produces an average of 3500 eggs per day. The lack of proper culture conditions supporting continuous oviposition in vitro has precluded detailed investigation of mechanisms regulating sexual maturation and egg production in Schistosoma japonicum. METHODS: We optimized in vitro culture conditions by replacing reagents that are part of the classical ABC169 medium. Fast Blue BB staining and 4',6-diamidino-2-phenylindole (DAPI) labeling were applied to observe the sexual development status of the females. In vitro RNA interference (RNAi) technology was used to validate the capability of the modified medium. The detection of male ß-alanyl-tryptamine (BATT) was conducted using liquid chromatography-mass spectrometry (LC-MS). RESULTS: Both m-AB169 (1640) and AB169 (1640) media are capable of facilitating the sexual development of paired virgin female S. japonicum, as well as sustaining the mature reproductive organs and egg production of adult S. japonicum for at least 22 days in vitro. M-AB169 (1640) provided a more stable condition for supporting the sexual maturity of female S. japonicum, as evidenced by the consistent initiation of egg production compared with AB169 (1640). Through a comparative analysis of S. japonicum and S. mansoni in diverse media, we demonstrated that these closely related species display distinct demands for their sexual development and egg production, suggesting a potential influence of nutritional factors on the observed variations in host ranges among different schistosome species. Importantly, we successfully identified the presence of the pheromone ß-alanyl-tryptamine (BATT) in S. japonicum, previously identified in S. mansoni, highlighting its conserved role in schistosome reproductive development. Through the employment of double-stranded RNA (dsRNA) treatment to silence two genes that are involved in either the male (gli1, glioma-associated oncogene homolog 1) or female (vf1, vitellogenic factor 1) side in male-induced female reproductive development of S. mansoni, we confirmed that the combination of m-AB169 (1640) and RNAi technology has the capacity to facilitate in vitro studies of S. japonicum's reproductive and oviposition processes. CONCLUSIONS: We developed a novel medium, m-AB169 (1640), that not only maintains the mature reproductive organs and continuous oviposition of adult female Schistosoma japonicum for up to 22 days but also supports the reproductive development and subsequent egg-laying of virgin females after pairing with male worms. This study provides a valuable in vitro platform for functional studies of the mechanisms underlying the fascinating biology of the female sexual development and egg production of S. japonicum, which may accelerate the development of new strategies targeting schistosome egg production.


Assuntos
Schistosoma japonicum , Schistosomatidae , Humanos , Animais , Masculino , Feminino , Schistosoma japonicum/genética , Oviposição , Reprodução , Genitália Feminina , Triptaminas
16.
Trends Ecol Evol ; 39(4): 315-317, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493056

RESUMO

The major insect pest of soft and stone fruits, the spotted-wing drosophila, Drosophila suzukii, has evolved a greater preference for laying eggs on ripe fruits over fermented ones. In a recent study, Cavey et al. found that higher responsiveness to low sugar concentrations has had an important role in this evolutionary shift in egg-laying behavior.


Assuntos
Drosophila , Oviposição , Animais , Frutas , Evolução Biológica
17.
Biol Lett ; 20(3): 20230376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442871

RESUMO

Floaters are sexually mature individuals that are not able to reproduce by defending breeding resources. Floaters often visit active nests, probably to gather public information or to compete for a nesting site. We tested the hypothesis that floaters preferentially prospect nests in which they have a better chance of taking over, and that they do so by assessing the owners' resource holding potential (RHP). We manipulated the flight capacity of male and female breeders in a population of spotless starlings (Sturnus unicolor) by clipping two flight feathers per wing before egg laying, thus increasing their wing-load and likely impairing their condition. We subsequently monitored breeder and floater activity by means of transponder readers during the nestling period. We found that nests owned by wing-clipped males were visited by a greater number of male floaters than control nests. This effect was absent in the case of wing-clipped females. The number of male floaters also increased with increasing nestling age and number of parental visits. The experiment shows that male floaters preferentially prospect nests in which the owner shows a reduced RHP, a strategy that likely allows them to evict weak owners and take over their nests for future reproductive attempts.


Assuntos
Estorninhos , Humanos , Animais , Feminino , Masculino , Cruzamento , Plumas , Oviposição , Reprodução
18.
PLoS One ; 19(3): e0283916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457456

RESUMO

Functional response describes the number of hosts attacked by a parasitoid in relation to host densities and plays an important role by connecting behavioral-level processes with community-level processes. Most functional response studies were carried out using simple experimental designs where the insects were confined to a plain and small arena with different host densities during a fixed period of time. With these designs, other factors that might affect the functional response of parasitoids were not analyzed, such as fecundity, age, and experience. We proposed a series of latent-variables Markovian models that comprised an integrated approach of functional response and egg production models to estimate the realized lifetime reproductive success of parasitoids. As a case study, we used the parasitoids Anagyrus cachamai and A. lapachosus (Hymenoptera: Encyrtidae), two candidate agents for neoclassical biocontrol of the Puerto Rican cactus pest mealybug, Hypogeococcus sp. (Hemiptera: Pseudococcidae). The tested species were assessed according to their physiology and prior experience. We estimated the number of mature eggs after emergence, egg production on the first day, egg production rate, the proportion of eggs resorbed, egg resorption threshold, and egg storage capacity. Anagyrus cachamai and A. lapachosus both presented a type III functional response. However, the two parasitoids behaved differently; for A. cachamai, the number of parasitized hosts decreased with female age and depended on the number of mature eggs that were available for oviposition, whereas A. lapachosus host parasitism increased with female age and was modulated by its daily egg load and previous experience. The methodology presented may have large applicability in pest control, invasive species management, and conservation biology, as it has the potential to increase our understanding of the reproductive biology of a wide variety of species, ultimately leading to improved management strategies.


Assuntos
Cactaceae , Hemípteros , Himenópteros , Vespas , Feminino , Animais , Himenópteros/fisiologia , Oviposição , Hemípteros/fisiologia , Controle Biológico de Vetores , Óvulo , Vespas/fisiologia , Interações Hospedeiro-Parasita
19.
Pestic Biochem Physiol ; 199: 105773, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458680

RESUMO

Chemical signals play a central role in mediating insect feeding and reproductive behavior, and serve as the primary drivers of the insect-plant interactions. The detection of chemical signals, particularly host plant volatiles, relies heavily on the insect's complex olfactory system. The Bemisia tabaci cryptic species complex is a group of globally important whitefly pests of agricultural and ornamental crops that have a wide range of host plants, but the molecular mechanism of their host plant recognition is not yet clear. In this study, the odorant coreceptor gene of the Whitefly MEAM1 cryptic species (BtOrco) was cloned. The coding sequence of BtOrco was 1413 bp in length, with seven transmembrane structural domains, and it was expressed primarily in the heads of both male and female adult whiteflies, rather than in other tissues. Knockdown of BtOrco using transgenic plant-mediated RNAi technology significantly inhibited the foraging behavior of whiteflies. This inhibition was manifested as a reduced percentage of whiteflies responding to the host plant and a prolonged foraging period. Moreover, there was a substantial suppression of egg-laying activity among adult female whiteflies. These results indicate that BtOrco has the potential to be used as a target for the design of novel active compounds for the development of environmentally friendly whitefly control strategies.


Assuntos
Hemípteros , Animais , Feminino , Hemípteros/genética , Oviposição , Plantas Geneticamente Modificadas , Interferência de RNA
20.
Genes (Basel) ; 15(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38397170

RESUMO

The egg-laying performance of Shan Ma ducks (Anas Platyrhynchos) is a crucial economic trait. Nevertheless, limited research has been conducted on the egg-laying performance of this species. We examined routine blood indicators and observed higher levels of metabolic and immune-related factors in the high-egg-production group compared with the low-egg-production group. Furthermore, we explored the ovarian transcriptome of both high- and low-egg-production groups of Shan Ma ducks using Illumina NovaSeq 6000 sequencing. A total of 1357 differentially expressed genes (DEGs) were identified, with 686 down-regulated and 671 up-regulated in the high-egg-production (HEP) ducks and low-egg-production (LEP) ducks. Several genes involved in the regulation of ovarian development, including neuropeptide Y (NPY), cell cycle protein-dependent kinase 1 (CDK1), and transcription factor 1 (E2F1), exhibited significant differential expressions at varying stages of egg production. Pathway functional analysis revealed that the DEGs were primarily associated with the steroid biosynthesis pathway, and the neuroactive ligand-receptor interaction pathway exhibited higher activity in the HEP group compared to the LEP group. This study offers valuable information about and novel insights into high egg production.


Assuntos
Ovário , Transcriptoma , Animais , Feminino , Ovário/metabolismo , Transcriptoma/genética , Patos/genética , Patos/metabolismo , Perfilação da Expressão Gênica , Oviposição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...